
autoMLk Documentation
Release 0.0.1a

pierre-chaville

Apr 08, 2018

Contents

1 Content 3
1.1 User guide . 3

1.1.1 Home . 3
1.1.2 Dataset . 3
1.1.3 Results and best models . 6

1.2 Installation . 19
1.2.1 Pre-requisites . 19
1.2.2 Installation . 22
1.2.3 Basic installation . 22
1.2.4 Advanced configuration . 23

1.3 Architecture . 26
1.4 DataSet . 26
1.5 Searching . 28
1.6 List of models . 28

1.6.1 Models level 1 . 28
1.6.2 Ensembles . 29

1.7 Pre-processing steps . 30
1.7.1 categorical encoding: . 30
1.7.2 text encoding: . 31
1.7.3 imputing missing values: . 31
1.7.4 feature scaling: . 31
1.7.5 feature selection: . 31

2 Indices 33

i

ii

autoMLk Documentation, Release 0.0.1a

This toolkit is designed to be integrated within a python project, but also independently through the interface of the
app.

The framework is built with principles from auto-sklearn, with the following improvements:

• web interface (flask) to review the datasets, the search results and graphs

• include sklearn models, but also Xgboost, LightGBM, CatBoost and keras Neural Networks

• 2nd level ensembling with model selection and stacking

• can be used in competition mode (to generate a submit file from a test set), on benchmark mode (separate train
set and public set) and standard mode.

Fig. 1: Best models by eval score

We have provided some public datasets to initialize the framework and compare results with best scores.

Contents 1

autoMLk Documentation, Release 0.0.1a

2 Contents

CHAPTER 1

Content

1.1 User guide

The dataset and the results of the search are best viewed with the web app through a standard browers.

to start the app, please go in the web folder and run the app server:

python run.py

then access the app in a browser with the follwoing url:

http://localhost:5001

or from another machine with the ip address of the machine where the server is running:

http://192.168.0.10:5001

(in this example, we suppose the address of the server is 192.168.0.10)

1.1.1 Home

The home page shows the list of datasets:

You can select a list of datasets from a specific domain, with the selector at the top right:

1.1.2 Dataset

To import the list of preloaded datasets (or your own list), you can select the option ‘Import’ in the menu ‘New’:

You may create directly a dataset by using the ‘Dataset’ option in the menu ‘New’:

You may afterwards update some fields of a dataset by using the edit icon in the list of datasets in the home page:

3

autoMLk Documentation, Release 0.0.1a

Fig. 1.1: list of datasets in autoMLk

4 Chapter 1. Content

autoMLk Documentation, Release 0.0.1a

Fig. 1.2: list of datasets per domain

1.1. User guide 5

autoMLk Documentation, Release 0.0.1a

Fig. 1.3: import a list of datasets

We can access to a specific dataset in clicking on the row of the required dataset. When a dataset is created, there is
only the features and analysis of the data available:

By clicking on the various tabs, we can view:

We need to launch the search process with various models in order to access to be results

1.1.3 Results and best models

When the search is launched, 3 additional tabs are available:

And per pre-processing steps:

The graph of the best results over time:

And after a while, the best ensembles:

The best ensembles

And then by clicking on a specific model access to the details

And then on a specific round:

Where we can view the performance and the predictions:

6 Chapter 1. Content

autoMLk Documentation, Release 0.0.1a

Fig. 1.4: create a new dataset

1.1. User guide 7

autoMLk Documentation, Release 0.0.1a

Fig. 1.5: update a dataset

img/info.png

Fig. 1.6: parameters of the dataset

8 Chapter 1. Content

autoMLk Documentation, Release 0.0.1a

Fig. 1.7: the list of features of the dataset

1.1. User guide 9

autoMLk Documentation, Release 0.0.1a

Fig. 1.8: the histogram of the target column

10 Chapter 1. Content

autoMLk Documentation, Release 0.0.1a

Fig. 1.9: the correlation matrix of the features

img/models.png

Fig. 1.10: Best models by eval score

img/processes.png

Fig. 1.11: pre-processing steps by eval score

1.1. User guide 11

autoMLk Documentation, Release 0.0.1a

Fig. 1.12: The evolution of the best scores in time

12 Chapter 1. Content

autoMLk Documentation, Release 0.0.1a

img/list_model.png

Fig. 1.13: details of the search by model

1.1. User guide 13

autoMLk Documentation, Release 0.0.1a

Fig. 1.14: a round with a se of model parameters and pre-processing

img/steps.png

Fig. 1.15: details of the re-processing steps

14 Chapter 1. Content

autoMLk Documentation, Release 0.0.1a

Fig. 1.16: feature importance scored by the model

1.1. User guide 15

autoMLk Documentation, Release 0.0.1a

Fig. 1.17: predictions versus actuals (in regression)

16 Chapter 1. Content

autoMLk Documentation, Release 0.0.1a

Fig. 1.18: and a confusion matrix (in classification)

1.1. User guide 17

autoMLk Documentation, Release 0.0.1a

Fig. 1.19: and the histogram of the predictions

18 Chapter 1. Content

autoMLk Documentation, Release 0.0.1a

Admin

Monitoring

The monitoring screen displays the different status of the different components in the architecture: controller and
workers

Fig. 1.20: monitoring panel

Config

It is also possible to modify the theme of the user interface directly from the config panel:

1.2 Installation

1.2.1 Pre-requisites

Sklearn version must be > 0.19, otherwise there will be several blocking issues.

1.2. Installation 19

autoMLk Documentation, Release 0.0.1a

Fig. 1.21: configuration panel

20 Chapter 1. Content

autoMLk Documentation, Release 0.0.1a

Fig. 1.22: configuration panel

to upgrade scikit-learn:

On conda:

conda update conda

conda update scikit-learn

If you do not use conda, update with pip:

pip install scikit-learn --update

Warning: if you use conda, you must absolutely update sklearn with conda

Additionally, you must also install category_encoders and imbalanced-learn:

pip install category_encoders
pip install imbalanced-learn

Optionally, you may install the following models:

• LightGBM (highly recommended, because it is very quick and efficient):

pip install lightgbm

• Xgboost (highly recommended, because it is also state of the art):

See Xgboost documentation for installation

• Catboost:

1.2. Installation 21

autoMLk Documentation, Release 0.0.1a

pip install catboost

• keras with theano or tensorflow:

See keras, theano or tensorflow documentation for installation

1.2.2 Installation

Download the module from github and extract the zip file in a folder (by default automlk-master)

Install as:

cd automlk-master

python setup.py install

1.2.3 Basic installation

The simplest installation runs on a single machine, with at least the following processes: 1. the web app 2. the
controller, grapher and text worker 3. a single worker

These 3 components are run in a console (Windows) or Terminal (Linux).

The basic installation will use a data folder on the same machine. By default, the data folder should be created at one
level upper the automlk-master folder.

For example, let’s assume that autoMLk is created in the $HOME (Linux) level or Documents (windows):

• home

– pierre

* automlk-master

· automlk

· run

· web

* data

If you want to use a data folder in another location, you can define this in the config screen.

To run the web app:

cd automlk-master/web

python run.py

This will launch the web app, which can be accessed from a web browser, at the following address:

http://localhost:5001

From the web app, you can now define the set-up and then import the example of datasets.

You can launch the search in a dataset simply by clicking on the start/pause button in the home screen, and view the
results through with the web interface. The search will continue automatically until the search is completed.

To run the controller, grapher et text manager:

22 Chapter 1. Content

autoMLk Documentation, Release 0.0.1a

cd automlk-master/run

python run_controller.py
python run_grapher.py
python run_worker_text.py

To run the workers on one or multiple machines:

On Linux:

cd automlk-master/run

sh worker.sh

On Windows:

cd automlk-master/run

worker

Note: This will run the python module ru_worker.py in an infinite loop, in order to catch the potential crashes from
the worker.

1.2.4 Advanced configuration

Data server

The data are stored in a specific folder. In the default configuration, it is supposed to be on the same machine, and in
the folder data. You may specify a different machine and location. The configuration is stored in the config.json file

{“data”: “../../data”, “theme”: “bootswatch/3.3.7/darkly”, “store”: “file”, “store_url”: “192.168.0.18”}

The data folder must be accessible by all the machines with the following components: - web server - controller -
worker

Web server

The web server should be on a separate machine than the workers, in order to guarantee the response times for the user
inferface.

If you want to use a data folder in another location, you can define this in the config screen.

To run the web app:

cd automlk-master/web

python run.py

This will launch the web app, which can be accessed from a web browser, at the following address:

http://localhost:5001

From the web app, you can now define the set-up and then import the example of datasets.

You can launch the search in a dataset simply by clicking on the start/pause button in the home screen, and view the
results through with the web interface. The search will continue automatically until the search is completed.

1.2. Installation 23

autoMLk Documentation, Release 0.0.1a

Fig. 1.23: independent components of the architecture

24 Chapter 1. Content

autoMLk Documentation, Release 0.0.1a

Store

The store by default is implemented using the file system, in he folder data/store, where ‘data’ is the folder defined for
data storage.

The recommended mode is Redis, with the following advantages: - faster user experience of the web app, thanks
to the in-memory storage of Redis which is very fast - more robust queuing and communication mecanism between
controller and workers.

It is then highly recommended to use Redis for the store, when you have a cluster of multiple workers.

The installation of Redis is simple on Linux machines, and there is also a windows version available. Please see the
Redis documentation directly to install and configure your Redis store.

The Redis server can be installed on the same machine as the web server.

Controller, grapher and text worker

The controller can be executed on the machine of the web server. It can also be installed if required on a specific
machine.

It must be run in a standalone process, and we recommend that you install this process in a service (windows server)
or a permanent process (Linux).

To run the controller:

cd automlk-master/run

python run_controller.py
python run_grapher.py
python run_worker_text.py

Workers

The workers are the components in the architecture with the most significant impact: the speed of search is directly
proportional to the number of workers. We recommend to run at least 4 workers, and with multiple datasets to be
searched simultaneously, a cluster of 10 to 20 machines should deliver great performance and speed.

To run the worker:

On Linux:

cd automlk-master/run

sh worker.sh

On Windows:

cd automlk-master/run

worker

Note: This will run the python module ru_worker.py in an infinite loop, in order to catch the potential crashes from
the worker.

1.2. Installation 25

autoMLk Documentation, Release 0.0.1a

1.3 Architecture

The architecture is distributed and can be installed on multiple machines

• the web app for user interaction and display results

• the controller manages the search between models and parameters

• the grapher generates graphs on a dataset asynchronously

• the texter generates unsupervised models for text sets

• the workers execute the pre-processing steps and cross validation (cpu intensive): the more workers are run in
parallel, the quicker the results

• the Redis store is an in-memory database and queue manager

Fig. 1.24: independent components of the architecture

The software architecture is organized in concentric layers:

1.4 DataSet

The features of the automated machine learning are defined and stored in the DataSet object. All features and data of
a DataSet object can be viewed with the web app.

26 Chapter 1. Content

autoMLk Documentation, Release 0.0.1a

Fig. 1.25: software components of the architecture

1.4. DataSet 27

autoMLk Documentation, Release 0.0.1a

We have included a sample of public datasets to start with autoMLk.

To use these datasets, upload the list of datasets or create a dataset in the New dataset from the menu.

the data describing these datasets are located in the csv file ‘dataset.csv’ in the automlk/datasets folder. You may use
the same format to create your own datasets.

1.5 Searching

The automated search will test preprocessing steps and models.

1.6 List of models

The following models are included in autoMLk, with their respective hyper-parameters:

1.6.1 Models level 1

regression:

LightGBM boosting_type, num_leaves, max_depth, learning_rate, n_estimators, min_split_gain, min_child_weight,
min_child_samples, subsample, subsample_freq, colsample_bytree, reg_alpha, reg_lambda, verbose, objective,
metric

XgBoost max_depth, learning_rate, n_estimators, booster, gamma, min_child_weight, max_delta_step, subsam-
ple, colsample_bytree, colsample_bylevel, reg_alpha, reg_lambda, scale_pos_weight, tree_method, sketch_eps,
n_jobs, silent, objective, eval_metric

CatBoost learning_rate, depth, verbose

Neural Networks units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers,
dropout

Extra Trees n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start,
criterion

Random Forest n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start,
n_jobs, criterion

Gradient Boosting n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start,
learning_rate, loss

AdaBoost n_estimators, learning_rate, random_state, loss

Knn n_neighbors, weights, algorithm, leaf_size, p, n_jobs

SVM C, epsilon, kernel, degree, gamma, coef0, shrinking, tol, max_iter, verbose

Linear SVR C, loss, epsilon, dual, tol, fit_intercept, intercept_scaling, max_iter, verbose

Linear Regression fit_intercept, normalize, copy_X, n_jobs

Ridge Regression alpha, fit_intercept, normalize, copy_X, tol, solver

Lasso Regression alpha, fit_intercept, normalize, precompute, copy_X, tol, positive, selection

28 Chapter 1. Content

autoMLk Documentation, Release 0.0.1a

Huber Regression epsilon, alpha, fit_intercept, tol

classification:

LightGBM boosting_type, num_leaves, max_depth, learning_rate, n_estimators, min_split_gain, min_child_weight,
min_child_samples, subsample, subsample_freq, colsample_bytree, reg_alpha, reg_lambda, verbose, objective,
metric

XgBoost max_depth, learning_rate, n_estimators, booster, gamma, min_child_weight, max_delta_step, subsam-
ple, colsample_bytree, colsample_bylevel, reg_alpha, reg_lambda, scale_pos_weight, tree_method, sketch_eps,
n_jobs, silent, objective, eval_metric

CatBoost learning_rate, depth, verbose

Extra Trees n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start,
n_jobs, criterion, class_weight

Random Forest n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start,
n_jobs, criterion, class_weight

Gradient Boosting n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start,
learning_rate, criterion, loss

AdaBoost n_estimators, learning_rate, random_state, algorithm

Knn n_neighbors, weights, algorithm, leaf_size, p, n_jobs

SVM C, kernel, degree, gamma, coef0, shrinking, tol, max_iter, verbose, probability

Logistic Regression penalty, dual, tol, C, fit_intercept, intercept_scaling, solver, max_iter, multi_class, n_jobs

Naive Bayes Gaussian **

Naive Bayes Bernoulli alpha, binarize, fit_prior

Neural Networks units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers,
dropout

1.6.2 Ensembles

regression:

Stacking LightGBM task, boosting, learning_rate, num_leaves, tree_learner, max_depth, min_data_in_leaf,
min_sum_hessian_in_leaf, feature_fraction, bagging_fraction, bagging_freq, lambda_l1, lambda_l2,
min_gain_to_split, drop_rate, skip_drop, max_drop, uniform_drop, xgboost_dart_mode, top_rate, other_rate,
verbose, objective, metric

Stacking XgBoost booster, eval_metric, eta, min_child_weight, max_depth, gamma, max_delta_step, sub_sample,
colsample_bytree, colsample_bylevel, lambda, alpha, tree_method, sketch_eps, scale_pos_weight, silent, ob-
jective

Stacking Extra Trees n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start,
criterion

1.6. List of models 29

autoMLk Documentation, Release 0.0.1a

Stacking Random Forest n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start,
n_jobs, criterion

Stacking Gradient Boosting n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start,
learning_rate, loss

Stacking Linear Regression fit_intercept, normalize, copy_X, n_jobs

classification:

Stacking LightGBM task, boosting, learning_rate, num_leaves, tree_learner, max_depth, min_data_in_leaf,
min_sum_hessian_in_leaf, feature_fraction, bagging_fraction, bagging_freq, lambda_l1, lambda_l2,
min_gain_to_split, drop_rate, skip_drop, max_drop, uniform_drop, xgboost_dart_mode, top_rate, other_rate,
verbose, objective, metric

Stacking XgBoost booster, eval_metric, eta, min_child_weight, max_depth, gamma, max_delta_step, sub_sample,
colsample_bytree, colsample_bylevel, lambda, alpha, tree_method, sketch_eps, scale_pos_weight, silent, ob-
jective

Stacking Neural Networks units, batch_size, batch_normalization, activation, optimizer, learning_rate, num-
ber_layers, dropout

Stacking Extra Trees n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start,
n_jobs, criterion, class_weight

Stacking Random Forest n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start,
n_jobs, criterion, class_weight

Stacking Gradient Boosting n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf,
min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start,
learning_rate, criterion, loss

Stacking Logistic Regression penalty, dual, tol, C, fit_intercept, intercept_scaling, solver, max_iter, multi_class,
n_jobs

Stacking Neural Networks units, batch_size, batch_normalization, activation, optimizer, learning_rate, num-
ber_layers, dropout

1.7 Pre-processing steps

The following pre-processing methods are included in autoMLk, with their respective hyper-parameters:

1.7.1 categorical encoding:

No encoding **

Label Encoder **

One hot categorical drop_invariant

BaseN categorical drop_invariant, base

Hashing categorical drop_invariant

30 Chapter 1. Content

autoMLk Documentation, Release 0.0.1a

1.7.2 text encoding:

Bag of words

Word2Vec

Doc2Vec

1.7.3 imputing missing values:

No missing **

Missing values fixed fixed

Missing values frequencies frequency

1.7.4 feature scaling:

No scaling **

Scaling Standard **

Scaling MinMax **

Scaling MaxAbs **

Scaling Robust quantile_range

1.7.5 feature selection:

No Feature selection **

Truncated SVD n_components, algorithm

Fast ICA n_components, algorithm

PCA n_components

Selection RF n_estimators

Selection RF n_estimators

Selection LSVR **

1.7. Pre-processing steps 31

autoMLk Documentation, Release 0.0.1a

32 Chapter 1. Content

CHAPTER 2

Indices

• genindex

33

	Content
	User guide
	Home
	Dataset
	Results and best models

	Installation
	Pre-requisites
	Installation
	Basic installation
	Advanced configuration

	Architecture
	DataSet
	Searching
	List of models
	Models level 1
	Ensembles

	Pre-processing steps
	categorical encoding:
	text encoding:
	imputing missing values:
	feature scaling:
	feature selection:

	Indices

