

AutoMLk: automated machine learning toolkit

This toolkit is designed to be integrated within a python project, but also independently through the interface of the app.

The framework is built with principles from auto-sklearn, with the following improvements:

	web interface (flask) to review the datasets, the search results and graphs

	include sklearn models, but also Xgboost, LightGBM, CatBoost and keras Neural Networks

	2nd level ensembling with model selection and stacking

	can be used in competition mode (to generate a submit file from a test set), on benchmark mode (separate train set and public set) and standard mode.

[image: models with the best scores]
Best models by eval score

We have provided some public datasets to initialize the framework and compare results with best scores.

Content

	User guide
	Home

	Dataset

	Results and best models
	Admin

	Monitoring

	Config

	Installation
	Pre-requisites

	Installation

	Basic installation

	Advanced configuration
	Data server

	Web server

	Store

	Controller, grapher and text worker

	Workers

	Architecture

	DataSet

	Searching

	List of models
	Models level 1
	regression:

	classification:

	Ensembles
	regression:

	classification:

	Pre-processing steps
	categorical encoding:

	text encoding:

	imputing missing values:

	feature scaling:

	feature selection:

Indices

	Index

User guide

The dataset and the results of the search are best viewed with the web app through a standard browers.

to start the app, please go in the web folder and run the app server:

python run.py

then access the app in a browser with the follwoing url:

http://localhost:5001

or from another machine with the ip address of the machine where the server is running:

http://192.168.0.10:5001

(in this example, we suppose the address of the server is 192.168.0.10)

Home

The home page shows the list of datasets:

[image: home page]
list of datasets in autoMLk

You can select a list of datasets from a specific domain, with the selector at the top right:

[image: domain]
list of datasets per domain

Dataset

To import the list of preloaded datasets (or your own list), you can select the option ‘Import’ in the menu ‘New’:

[image: import datasets]
import a list of datasets

You may create directly a dataset by using the ‘Dataset’ option in the menu ‘New’:

[image: create dataset]
create a new dataset

You may afterwards update some fields of a dataset by using the edit icon in the list of datasets in the home page:

[image: update dataset]
update a dataset

We can access to a specific dataset in clicking on the row of the required dataset.
When a dataset is created, there is only the features and analysis of the data available:

[image: dataset]
parameters of the dataset

By clicking on the various tabs, we can view:

[image: features]
the list of features of the dataset

[image: histogram of the target column]
the histogram of the target column

[image: correlation matrix of the features]
the correlation matrix of the features

We need to launch the search process with various models in order to access to be results

Results and best models

When the search is launched, 3 additional tabs are available:

[image: models with the best scores]
Best models by eval score

And per pre-processing steps:

[image: pre-processing steps with the best scores]
pre-processing steps by eval score

The graph of the best results over time:

[image: search history]
The evolution of the best scores in time

And after a while, the best ensembles:

[image: _images/ensembles.png]

The best ensembles

And then by clicking on a specific model access to the details

[image: details of the search by model]
details of the search by model

And then on a specific round:

[image: details of a round]
a round with a se of model parameters and pre-processing

[image: pre-processing steps]
details of the re-processing steps

Where we can view the performance and the predictions:

[image: feature importance]
feature importance scored by the model

[image: predictions versus actuals]
predictions versus actuals (in regression)

[image: confusion matrix]
and a confusion matrix (in classification)

[image: histogram of the predictions]
and the histogram of the predictions

Admin

Monitoring

The monitoring screen displays the different status of the different components in the architecture: controller and workers

[image: monitoring]
monitoring panel

Config

[image: admin console]
configuration panel

It is also possible to modify the theme of the user interface directly from the config panel:

[image: admin console]
configuration panel

Installation

Pre-requisites

Sklearn version must be > 0.19, otherwise there will be several blocking issues.

to upgrade scikit-learn:

On conda:

conda update conda

conda update scikit-learn

If you do not use conda, update with pip:

pip install scikit-learn --update

Warning: if you use conda, you must absolutely update sklearn with conda

Additionally, you must also install category_encoders and imbalanced-learn:

pip install category_encoders
pip install imbalanced-learn

Optionally, you may install the following models:

	LightGBM (highly recommended, because it is very quick and efficient):

pip install lightgbm

	Xgboost (highly recommended, because it is also state of the art):

See Xgboost documentation for installation

	Catboost:

pip install catboost

	keras with theano or tensorflow:

See keras, theano or tensorflow documentation for installation

Installation

Download the module from github and extract the zip file in a folder (by default automlk-master)

Install as:

cd automlk-master

python setup.py install

Basic installation

The simplest installation runs on a single machine, with at least the following processes:
1. the web app
2. the controller, grapher and text worker
3. a single worker

These 3 components are run in a console (Windows) or Terminal (Linux).

The basic installation will use a data folder on the same machine.
By default, the data folder should be created at one level upper the automlk-master folder.

For example, let’s assume that autoMLk is created in the $HOME (Linux) level or Documents (windows):

	
	home

	
	
	pierre

	
	
	automlk-master

	
	automlk

	run

	web

	data

If you want to use a data folder in another location, you can define this in the config screen.

To run the web app:

cd automlk-master/web

python run.py

This will launch the web app, which can be accessed from a web browser, at the following address:

http://localhost:5001

From the web app, you can now define the set-up and then import the example of datasets.

You can launch the search in a dataset simply by clicking on the start/pause button in the home screen, and view the results through with the web interface.
The search will continue automatically until the search is completed.

To run the controller, grapher et text manager:

cd automlk-master/run

python run_controller.py
python run_grapher.py
python run_worker_text.py

To run the workers on one or multiple machines:

On Linux:

cd automlk-master/run

sh worker.sh

On Windows:

cd automlk-master/run

worker

Note:
This will run the python module ru_worker.py in an infinite loop, in order to catch the potential crashes from the worker.

Advanced configuration

[image: architecture of automlk]
independent components of the architecture

Data server

The data are stored in a specific folder. In the default configuration, it is supposed to be on the same machine, and in the folder data.
You may specify a different machine and location. The configuration is stored in the config.json file

{“data”: “../../data”, “theme”: “bootswatch/3.3.7/darkly”, “store”: “file”, “store_url”: “192.168.0.18”}

The data folder must be accessible by all the machines with the following components:
- web server
- controller
- worker

Web server

The web server should be on a separate machine than the workers, in order to guarantee the response times for the user inferface.

If you want to use a data folder in another location, you can define this in the config screen.

To run the web app:

cd automlk-master/web

python run.py

This will launch the web app, which can be accessed from a web browser, at the following address:

http://localhost:5001

From the web app, you can now define the set-up and then import the example of datasets.

You can launch the search in a dataset simply by clicking on the start/pause button in the home screen, and view the results through with the web interface.
The search will continue automatically until the search is completed.

Store

The store by default is implemented using the file system, in he folder data/store, where ‘data’ is the folder defined for data storage.

The recommended mode is Redis, with the following advantages:
- faster user experience of the web app, thanks to the in-memory storage of Redis which is very fast
- more robust queuing and communication mecanism between controller and workers.

It is then highly recommended to use Redis for the store, when you have a cluster of multiple workers.

The installation of Redis is simple on Linux machines, and there is also a windows version available.
Please see the Redis documentation directly to install and configure your Redis store.

The Redis server can be installed on the same machine as the web server.

Controller, grapher and text worker

The controller can be executed on the machine of the web server. It can also be installed if required on a specific machine.

It must be run in a standalone process, and we recommend that you install this process in a service (windows server) or a permanent process (Linux).

To run the controller:

cd automlk-master/run

python run_controller.py
python run_grapher.py
python run_worker_text.py

Workers

The workers are the components in the architecture with the most significant impact: the speed of search is directly proportional to the number of workers.
We recommend to run at least 4 workers, and with multiple datasets to be searched simultaneously, a cluster of 10 to 20 machines should deliver great performance and speed.

To run the worker:

On Linux:

cd automlk-master/run

sh worker.sh

On Windows:

cd automlk-master/run

worker

Note:
This will run the python module ru_worker.py in an infinite loop, in order to catch the potential crashes from the worker.

Architecture

The architecture is distributed and can be installed on multiple machines

	the web app for user interaction and display results

	the controller manages the search between models and parameters

	the grapher generates graphs on a dataset asynchronously

	the texter generates unsupervised models for text sets

	the workers execute the pre-processing steps and cross validation (cpu intensive): the more workers are run in parallel, the quicker the results

	the Redis store is an in-memory database and queue manager

[image: architecture of automlk]
independent components of the architecture

The software architecture is organized in concentric layers:

[image: software components]
software components of the architecture

DataSet

The features of the automated machine learning are defined and stored in the DataSet object.
All features and data of a DataSet object can be viewed with the web app.

We have included a sample of public datasets to start with autoMLk.

To use these datasets, upload the list of datasets or create a dataset in the New dataset from the menu.

the data describing these datasets are located in the csv file ‘dataset.csv’ in the automlk/datasets folder.
You may use the same format to create your own datasets.

Searching

The automated search will test preprocessing steps and models.

List of models

The following models are included in autoMLk, with their respective hyper-parameters:

Models level 1

regression:

	LightGBM

	boosting_type, num_leaves, max_depth, learning_rate, n_estimators, min_split_gain, min_child_weight, min_child_samples, subsample, subsample_freq, colsample_bytree, reg_alpha, reg_lambda, verbose, objective, metric

	XgBoost

	max_depth, learning_rate, n_estimators, booster, gamma, min_child_weight, max_delta_step, subsample, colsample_bytree, colsample_bylevel, reg_alpha, reg_lambda, scale_pos_weight, tree_method, sketch_eps, n_jobs, silent, objective, eval_metric

	CatBoost

	learning_rate, depth, verbose

	Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout

	Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, criterion

	Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion

	Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, loss

	AdaBoost

	n_estimators, learning_rate, random_state, loss

	Knn

	n_neighbors, weights, algorithm, leaf_size, p, n_jobs

	SVM

	C, epsilon, kernel, degree, gamma, coef0, shrinking, tol, max_iter, verbose

	Linear SVR

	C, loss, epsilon, dual, tol, fit_intercept, intercept_scaling, max_iter, verbose

	Linear Regression

	fit_intercept, normalize, copy_X, n_jobs

	Ridge Regression

	alpha, fit_intercept, normalize, copy_X, tol, solver

	Lasso Regression

	alpha, fit_intercept, normalize, precompute, copy_X, tol, positive, selection

	Huber Regression

	epsilon, alpha, fit_intercept, tol

classification:

	LightGBM

	boosting_type, num_leaves, max_depth, learning_rate, n_estimators, min_split_gain, min_child_weight, min_child_samples, subsample, subsample_freq, colsample_bytree, reg_alpha, reg_lambda, verbose, objective, metric

	XgBoost

	max_depth, learning_rate, n_estimators, booster, gamma, min_child_weight, max_delta_step, subsample, colsample_bytree, colsample_bylevel, reg_alpha, reg_lambda, scale_pos_weight, tree_method, sketch_eps, n_jobs, silent, objective, eval_metric

	CatBoost

	learning_rate, depth, verbose

	Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight

	Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight

	Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, criterion, loss

	AdaBoost

	n_estimators, learning_rate, random_state, algorithm

	Knn

	n_neighbors, weights, algorithm, leaf_size, p, n_jobs

	SVM

	C, kernel, degree, gamma, coef0, shrinking, tol, max_iter, verbose, probability

	Logistic Regression

	penalty, dual, tol, C, fit_intercept, intercept_scaling, solver, max_iter, multi_class, n_jobs

	Naive Bayes Gaussian

	**

	Naive Bayes Bernoulli

	alpha, binarize, fit_prior

	Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout

Ensembles

regression:

	Stacking LightGBM

	task, boosting, learning_rate, num_leaves, tree_learner, max_depth, min_data_in_leaf, min_sum_hessian_in_leaf, feature_fraction, bagging_fraction, bagging_freq, lambda_l1, lambda_l2, min_gain_to_split, drop_rate, skip_drop, max_drop, uniform_drop, xgboost_dart_mode, top_rate, other_rate, verbose, objective, metric

	Stacking XgBoost

	booster, eval_metric, eta, min_child_weight, max_depth, gamma, max_delta_step, sub_sample, colsample_bytree, colsample_bylevel, lambda, alpha, tree_method, sketch_eps, scale_pos_weight, silent, objective

	Stacking Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, criterion

	Stacking Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion

	Stacking Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, loss

	Stacking Linear Regression

	fit_intercept, normalize, copy_X, n_jobs

classification:

	Stacking LightGBM

	task, boosting, learning_rate, num_leaves, tree_learner, max_depth, min_data_in_leaf, min_sum_hessian_in_leaf, feature_fraction, bagging_fraction, bagging_freq, lambda_l1, lambda_l2, min_gain_to_split, drop_rate, skip_drop, max_drop, uniform_drop, xgboost_dart_mode, top_rate, other_rate, verbose, objective, metric

	Stacking XgBoost

	booster, eval_metric, eta, min_child_weight, max_depth, gamma, max_delta_step, sub_sample, colsample_bytree, colsample_bylevel, lambda, alpha, tree_method, sketch_eps, scale_pos_weight, silent, objective

	Stacking Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout

	Stacking Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight

	Stacking Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight

	Stacking Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, criterion, loss

	Stacking Logistic Regression

	penalty, dual, tol, C, fit_intercept, intercept_scaling, solver, max_iter, multi_class, n_jobs

	Stacking Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout

Pre-processing steps

The following pre-processing methods are included in autoMLk, with their respective hyper-parameters:

categorical encoding:

	No encoding

	**

	Label Encoder

	**

	One hot categorical

	drop_invariant

	BaseN categorical

	drop_invariant, base

	Hashing categorical

	drop_invariant

text encoding:

Bag of words

Word2Vec

Doc2Vec

imputing missing values:

	No missing

	**

	Missing values fixed

	fixed

	Missing values frequencies

	frequency

feature scaling:

	No scaling

	**

	Scaling Standard

	**

	Scaling MinMax

	**

	Scaling MaxAbs

	**

	Scaling Robust

	quantile_range

feature selection:

	No Feature selection

	**

	Truncated SVD

	n_components, algorithm

	Fast ICA

	n_components, algorithm

	PCA

	n_components

	Selection RF

	n_estimators

	Selection RF

	n_estimators

	Selection LSVR

	**

Index

Models level 1

regression:

	LightGBM

	boosting_type, num_leaves, max_depth, learning_rate, n_estimators, min_split_gain, min_child_weight, min_child_samples, subsample, subsample_freq, colsample_bytree, reg_alpha, reg_lambda, verbose, objective, metric

	XgBoost

	max_depth, learning_rate, n_estimators, booster, gamma, min_child_weight, max_delta_step, subsample, colsample_bytree, colsample_bylevel, reg_alpha, reg_lambda, scale_pos_weight, tree_method, sketch_eps, n_jobs, silent, objective, eval_metric

	CatBoost

	learning_rate, depth, verbose

	Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout

	Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, criterion

	Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion

	Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, loss

	AdaBoost

	n_estimators, learning_rate, random_state, loss

	Knn

	n_neighbors, weights, algorithm, leaf_size, p, n_jobs

	SVM

	C, epsilon, kernel, degree, gamma, coef0, shrinking, tol, max_iter, verbose

	Linear SVR

	C, loss, epsilon, dual, tol, fit_intercept, intercept_scaling, max_iter, verbose

	Linear Regression

	fit_intercept, normalize, copy_X, n_jobs

	Ridge Regression

	alpha, fit_intercept, normalize, copy_X, tol, solver

	Lasso Regression

	alpha, fit_intercept, normalize, precompute, copy_X, tol, positive, selection

	Huber Regression

	epsilon, alpha, fit_intercept, tol

classification:

	LightGBM

	boosting_type, num_leaves, max_depth, learning_rate, n_estimators, min_split_gain, min_child_weight, min_child_samples, subsample, subsample_freq, colsample_bytree, reg_alpha, reg_lambda, verbose, objective, metric

	XgBoost

	max_depth, learning_rate, n_estimators, booster, gamma, min_child_weight, max_delta_step, subsample, colsample_bytree, colsample_bylevel, reg_alpha, reg_lambda, scale_pos_weight, tree_method, sketch_eps, n_jobs, silent, objective, eval_metric

	CatBoost

	learning_rate, depth, verbose

	Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight

	Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight

	Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, criterion, loss

	AdaBoost

	n_estimators, learning_rate, random_state, algorithm

	Knn

	n_neighbors, weights, algorithm, leaf_size, p, n_jobs

	SVM

	C, kernel, degree, gamma, coef0, shrinking, tol, max_iter, verbose, probability

	Logistic Regression

	penalty, dual, tol, C, fit_intercept, intercept_scaling, solver, max_iter, multi_class, n_jobs

	Naive Bayes Gaussian

	**

	Naive Bayes Bernoulli

	alpha, binarize, fit_prior

	Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout

Ensembles

regression:

	Stacking LightGBM

	task, boosting, learning_rate, num_leaves, tree_learner, max_depth, min_data_in_leaf, min_sum_hessian_in_leaf, feature_fraction, bagging_fraction, bagging_freq, lambda_l1, lambda_l2, min_gain_to_split, drop_rate, skip_drop, max_drop, uniform_drop, xgboost_dart_mode, top_rate, other_rate, verbose, objective, metric

	Stacking XgBoost

	booster, eval_metric, eta, min_child_weight, max_depth, gamma, max_delta_step, sub_sample, colsample_bytree, colsample_bylevel, lambda, alpha, tree_method, sketch_eps, scale_pos_weight, silent, objective

	Stacking Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, criterion

	Stacking Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion

	Stacking Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, loss

	Stacking Linear Regression

	fit_intercept, normalize, copy_X, n_jobs

classification:

	Stacking LightGBM

	task, boosting, learning_rate, num_leaves, tree_learner, max_depth, min_data_in_leaf, min_sum_hessian_in_leaf, feature_fraction, bagging_fraction, bagging_freq, lambda_l1, lambda_l2, min_gain_to_split, drop_rate, skip_drop, max_drop, uniform_drop, xgboost_dart_mode, top_rate, other_rate, verbose, objective, metric

	Stacking XgBoost

	booster, eval_metric, eta, min_child_weight, max_depth, gamma, max_delta_step, sub_sample, colsample_bytree, colsample_bylevel, lambda, alpha, tree_method, sketch_eps, scale_pos_weight, silent, objective

	Stacking Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout

	Stacking Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight

	Stacking Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight

	Stacking Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, criterion, loss

	Stacking Logistic Regression

	penalty, dual, tol, C, fit_intercept, intercept_scaling, solver, max_iter, multi_class, n_jobs

	Stacking Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout

categorical encoding:

	No encoding

	**

	Label Encoder

	**

	One hot categorical

	drop_invariant

	BaseN categorical

	drop_invariant, base

	Hashing categorical

	drop_invariant

text encoding:

Bag of words

Word2Vec

Doc2Vec

imputing missing values:

	No missing

	**

	Missing values fixed

	fixed

	Missing values frequencies

	frequency

feature scaling:

	No scaling

	**

	Scaling Standard

	**

	Scaling MinMax

	**

	Scaling MaxAbs

	**

	Scaling Robust

	quantile_range

feature selection:

	No Feature selection

	**

	Truncated SVD

	n_components, algorithm

	Fast ICA

	n_components, algorithm

	PCA

	n_components

	Selection RF

	n_estimators

	Selection RF

	n_estimators

	Selection LSVR

	**

 _images/create_dataset.png
= AutoMi x QY

C | @ localhost:

Home Newdataset Import Monitor

Create new dataset

g
3
H

Description

o
g
£
3

B Public dataset

URL

Problem type

classification v

Metric

Other metrics

AutoMLk

N
S

< F A o " _. _. n
2 2 R B
g > N c 5 5 & s 2
g 13 @ 3 3 Iy 5 §
£ 2 H H = 8 2 3
El 2 dl g g b £ 2
= ® 8 8 Fl =4 £l
g =Y L B B
3 B

_images/domain.png
Datasets

name status >

& Benchmarks/Text

IMDB (copy) —
| searching |

ER —
complted

& Benchmarks/Basic

= Kaggle

119

i8

best result

Logistic Regression

Stacking Logistic Regression

0.94906
+/-0.0024
0.9464

0.96026
+/-0.002
0.95765

classification
25rows x 3 cols, 1 text cols

classification
25rows x 3 cols, 1 text cols

actions
@& o @
@& o @

_images/hist.png
Home > IMDB

IF1

frequencies

152

IFp

z O B X wy X B

distribution of sentiment (train set)

0.0

02 0.4 0.6 0.8 10 12
values

_static/comment-bright.png

_images/histpred.png
Home > Ames Housing > Linear Regression > 24

Imp WiPred lulHist

histogram of predictions (eval set)

10

0.8

frequencies
o
S

0.4

02

0.0

10.5

1.0 115 120 125 13.0
values

frequencies

histogram of predictions (test set)

12

10

0.8

°
S

0.4

02

0.0
1 12

13 14
values

15

_images/ensembles.png
Home > IMDB

51 152 IEp =4

model o
Stacking Logistic 0.96026
Regression +/-0.002
—

095765

Stacking Gradient 095967
Boosting +/-0.0019
—

0.95696

Stacking LightGBM | 0.95945
—

+/-00018

095695
Stacking XgBoost 095935
——— 0o

095669
Stacking Random 095929
Forest +/-00018
—

095675

Stacking ExtraTrees | 0.95913
— 00018

found in 6 models and 182 configurations

eval

096013

095946

095928

095915

095911

0.95897

test

096167

0.96094

0.96062

0.96041

0.96037

095997

{792.165.0.111:5001 dataset/zaensembles]

WX Yy X @B

other # duration

accuracy:0.89505, 38 00s

precision: 0.89462, 30s
recall: 0.8956, f1:

089511

accuracy:0.89535, 25 00s
precision: 0.89295, 420s.
recall: 0.8984, f1:

089567

accuracy: 0.8973, 41 00s
precision: 0.8943, 110s
recall:0.9011, f1:

089769

accuracy:0.89535, 32 00s

precision: 0.8921, 7.0s
recall: 0.8995, f1:
089578
accuracy: 0.8953, 15 00s
ision: 0.89193, 2mn7
.8996, F1:
089575
accuracy: 0.8955, 31 00s
precision: 0.89166, 150s
recall: 0.9004, f1:
0.89601

params

penalty: 2, dual: False, tol: 0.0001, C: 0.0909, fit intercept: True,
intercept scaling: 1, solver: sag, max iter: 1000, multi class: ovr

n estimators: 296, max features: auto, max depth: None, min samples
split: 2, min samples leaf: 0.2403, min weight fraction leaf: 0.0394, max
leaf nodes: None, min impurity decrease: 0, learning rate: 0.1, criterion:
mse, loss: exponential

boosting: gbdt, learning rate: 0.0309, num leaves: 195, tree learner:
serial, max depth: 74, min data n leaf: 38, min sum hessian i leaf: 0.001,
feature fraction: 0.206, bagging fraction: 08528, lambda I1: 0, lambda :
0.2056, min gain tosplit: 0.1856, drop rate: 0.4651, skip drop: 0.4251,
max drop: 50, uniform drop: True, xgboost dart mode: False, toprate: 0.2,
other rate: 0.1, objective: binary, metric: binary_logloss, max bin: 255

booster: dart, eval metric: logloss, eta: 0.1757, min child weight:
120,008, max depth: 53, gamma: 0, max delta step: 4, sub sample: 1,
colsample bytree: 1, colsample byleval: 1, lambda: 1, alpha: O, tree
method: approx, sketch eps: 0.03, scale pos weight: 1, objective:
binary:logistic

n estimators: 821, max features: sqrt, max depth: None, min samples
split: 2, min samples leaf: 1, min weight fraction leaf: 0, max leaf nodes:
None, min impurity decrease: 0, criterion: entropy, class weight: None

n estimators: 553, max features: auto, max depth: 32, min samples split:
2, min samples leaf: 1, min weight fraction leaf: 0, max leaf nodes: None,
min impurity decrease: 0, criterion: gin, class weight: None

_static/ajax-loader.gif

_images/features.png
Home > IMDB

IF1 IF2 IFp 2 @

B Lot X

NB: edit features is deactivated because the search has started

name description
id id

sentiment Sentiment of the review; 1 for
positive reviews and O for
negative reviews

review Textof the review

keep raw_type

x object
int64
object

Wy X B

type
categorical

numerical

text

missing

unique

25000

24904

values
5814.8,2381.9,7759_3,3630_4, 9495_8

10

‘With all this stuff going down at the moment with MJ i've started
listening to his music, watching the odd documentary here and there,
‘watched The Wiz and watched Moonwalker again. Maybe i just want
t.

_static/down-pressed.png

_images/importance.png
©® = [Fimp lwPred lalHist
feature importance
Id 38
GrLivArea 33 o
LotArea 32 o
LotFrontage 25 o
BsmtUnfSF 22 D
1StFIrSF 21 B ——
TotalBsmtSF 20 D
OpenPorchSF 19 D
GarageArea 18 B
YearBuilt 18 B —————
‘WoodDeckSF 16 B —————
GarageYrBIt 16 B
2ndFIrSF 14 B
BsmtFinSF1 14 B
L MoSold 14 e eees———————————————————————————

_static/down.png

_images/monitor.png
Monitor activity

server version cpu ‘memory job time
Controller
desktop-111 0.0.15 /4 31068 dataset id: 1, round id: 119, solution: RF-C, level: 1, ensemble depth: 0, model name: Random ~ 14:44

Forest, model params: {' f
min_s X samples Ieaf 029910000000000003, min.weight raction feaf

warm_start: CE-HASH,
‘categorical, Hashing categorical; (drop. invariant’ Truel, INO-SCALE, ‘scaling, No Scaling,
{11, [SVD; ‘feature, "Truncated SVD;, {'n_components': 20, ‘algorithm’ ‘arpack'}],['SP_PASS;,
‘sampling,, 'No re-sampling’, {}]], threshold: 0.3214, time limit: 3600

4 Workers
server-115 0015 ar2 13068 14:44
o E—
.2, 'other_rate':0.29042,
[['D2V" text, 'Doc2Vec,
desktop-112 0015 ara 31068 14:26

model params: {'booster \child
560.0044, ‘max_depth': 37, ‘gamma' 7.0093,'max_delta step': 0, 'sub_sample’: 10,
‘colsample._bytre:
0.402, 'tree_method':
‘objective’: binary-logistic’) pipeline: [CE-BASE! 'categorical, ‘BaseN categorical
{'drop_invariant': True, 'base": 5]], 'NO-SCALE' 'scaling, "No Scaling, {}], [PASS;, 'feature’ 'No
'sampling, 'No re-sampling’ {}]], threshold: 0.3214, time limit:

_static/comment-close.png

_images/home.png
Datasets

& Benchmarks/Text

IMDB (copy)

IMDB

status.

>

& Benchmarks/Basic

Ames Housing

Titanic

Abalone

Wine (classification)

Wine

Bank Marketing

i@ :®@ :§ B :§

best result

Logistic Regression

Stacking Logistic Regression

Linear Regression

ExtraTrees

CatBoost

ExtraTrees

ExtraTrees

LightGBM

0.94906
+/-0.0024
0.9464

0.96026
+/-0.002
0.95765

[RELZE]
+/-00175
0.15955

0.83705
+/-00142
0827

210999
+/-0.0766
2.20692

08963
+/-0.0327
09414

0.39147
+/-0.0296
04247

0.95036

description

classification

25 rows x 3cols, 1 text cols

classification
25 rows x 3cols, 1 text cols

regression
1 rows x 81 cols, 54 categ. cols, 19 missing cols

classification
Orowsx 12 cols, 4 categ. cols, 3 missing cols

regression
4rowsx 9 cols, 1 categ. cols

classification
6rows x 13 cols, 1 categ. cols

regression
6rows x 13 cols, 1 categ. cols

classification

L/0000Q A1 rowes ¥ 21 cols 10 catea col

actions

z @&

z @&

z @&

z @&

z @&

z @&

z @&

z @&

_static/comment.png

_images/import.png
Home New~ Admin~ AutoMLk

Import dataset list from file
Dataset data to import

Submit

_static/file.png

_images/predict.png
Home > Ames Housing > Linear Regression > 24

® = [Fimp lwPred LmHist

pearsonr = 0.94;

12.75

12.50 .

12.25

12.00

preaict

o)

11.75 .

1150 *«

11.25 53

11.00

11.00 1125 11.50 1175 12.00 12.25 12.50
actuals

12.75

predict

1.4

pearsonr

testr

0.87; p = 2.5e-90

1.6 118 120 122 124 126 1238

actuals

_static/minus.png

_images/round.png
round data

o
score eval
score test
eval metrics
test metrics
model

time

pre-processing
duration

‘modeling duration
host

round id

model level

pre-processing

params

imp

Home > Ames Housing > Linear Regression > 24

ladPred Ll Hist

parameters
0.13543+/-001746,0.15955 fitintercept
0.13654 normalize
020764 copy X
12:088453 n_jobs
2:071523

Linear Regression

2017-11-15 10:10:15

40s

40s

desktop-111

24

1

[['CE-HOT! ‘categorical, ‘One hot categorical,
{drop_invariant': Truel], [MISS-FIXED; ‘missing!
"Missing values fixed: 'fixed": -100]], [SCALE! 'scaling,

Feature Scaling, {'scaler’: max_abs'l], 'FS-RF, ‘feature|,
‘Selection RF, {'n_estimators': 50}]]

{'fit_intercept": False, 'normali
'n_jobs":-1}

+True, ‘copy X' False,

False

True

False

nav.xhtml

 Table of Contents

 		
 AutoMLk: automated machine learning toolkit

 		
 User guide

 		
 Home

 		
 Dataset

 		
 Results and best models

 		
 Admin

 		
 Monitoring

 		
 Config

 		
 Installation

 		
 Pre-requisites

 		
 Installation

 		
 Basic installation

 		
 Advanced configuration

 		
 Data server

 		
 Web server

 		
 Store

 		
 Controller, grapher and text worker

 		
 Workers

 		
 Architecture

 		
 DataSet

 		
 Searching

 		
 List of models

 		
 Models level 1

 		
 regression:

 		
 classification:

 		
 Ensembles

 		
 regression:

 		
 classification:

 		
 Pre-processing steps

 		
 categorical encoding:

 		
 text encoding:

 		
 imputing missing values:

 		
 feature scaling:

 		
 feature selection:

_images/new_config.png
@ AutoMLk

@

C | ® localhost:5001/index

Home New ~

Datasets

domain

Benchmarks/Basic

Benchmarks/Text

Benchmarks/Basic

Benchmarks/Large

Benchmarks/Basic

Benchmarks/Basic

Benchmarks/Basic

Benchmarks/Basic

Benchmarks/Basic

Benchmarks/Basic

Admin ~

Adult

IMDB

Ames Housing (log)

Lending Club

Titanic

Abalone

Wine (classification)

Wine

Bank Marketing

Adult (copy) (copy)

status | level

completed

e=m
e=m
e

g0 gE ge eo -

description

Prediction task is to determine whether a person
makes over 50K a year.

The labeled data set consists of 50,000 IMDB movie
reviews, specially selected for sentiment analysi...

The Ames Housing dataset was compiled by Dean
De Cock for use in data science education. It's an
inc...

These files contain complete loan data for all loans
issued through the 2007-2015, including the cur...

The sinking of the RMS Titanic is one of the most
infamous shipwrecks in history. On April 15, 1912...

Predict the age of abalone from physical
measurements, from the study: The Population
Biology of Aba...

The two datasets are related to red and white
variants of the Portuguese "Vinho Verde® wine. For
mor...

The two datasets are related to red and white
variants of the Portuguese "Vinho Verde® wine. For
mor...

he data i related with direct marketing campaigns
of a Portuguese banking institution. The marketin...

Prediction task is to determine whether a person
makes over 50K a year....

25K

887K

0K

aK

6K

6K

41K

32K

AutoMLk

actions

z & ®
z & ®
z & ®
z & ®
z & ®
z & ®
z & ®
z & ®
z & ®
z & ®

_static/up-pressed.png

_static/up.png

_static/plus.png

_images/software.png
Web app (automlk)

web/applviews webl/app/forms web/app/templatesl...
Manage browser page requests Form classes Page rendering templates.

controller.py
Controls search strategy and send instruction to search workers

worker.py
search worker
dataset.py
Dataset and features
models.py class
ing. Hyper model class and wrappers for
preprocessing.py sklearn, gradient boosting, NN models
Pipeline and pre-processing
transformers. Wrapper to skleam and Ensemble models
categorical_encoder
utils/keras_wrapper.py
wrapper NN model
Hyper-parameter spaces -
E 3 itor.py
spaces/model.py spacesl/process.py mont
‘Space definition for each ‘Space definition for each Monitoring class
model . transformer
spaces/hyper.py graphs.py
‘Space dlass Graph generation for

datasets and results

store.py
Wrapper for Redis store or file store

_images/update.png
[AutomLk

Home New~ Admin~ AutoMLk

Update dataset

Name

Adult (copy)

Domain

Benchmarks/Basic

Description

Prediction task s to determine whether a person makes over 50K ayear.

Source

ucl

URL

https://archive.ics.uci.edu/mi/datasets/Adult

Save

_images/config.png
Home New~ Admin~ Help

Configuration set-up
Data storage

data

i

AutoMLk

_images/confusion.png
0 AutomLl

c

True label

192.168.0.111

Ll Hist
conrusion matrix (eval set)

12.00 10.00

1207.00

1716.00

o © a L3 L)

conrusiB Hktt R st ser)

24.00 12.00

1600

1400

1200

1000

800

600

400

200

400

350

_images/architecture.png
Web app
User interaction:
display datasets, results, graphs

- Redis
Controller Store
Select models, pre-processing pipeline <
and parameters. Determines the best Pl
Search strategy. Send instructions to workers | i queues

Worker Worker

pre-processing pre-processing pre-processing -
and cross and cross and cross
validation validation validation

Data
Data and results

_images/best.png
score

0.952

0.951

0.950

0.949

0.948

0.947

0.946

B wXx Wy X B

best score over time (level=1)

50 100 150 200
total searches

best score over time (level=2)

score

0.952

0.951

0.950

0.949

0.948

0.947

0.946

best score for 5 best models (level=1)

LightGBM

Gradient Boosting
Extra Trees
CatBoost

Logistic Regression

20 40 60 80 100 120 140
searches

best score for 5 best models (level=2)

_images/correl.png
& AutoMLk b

guide—

C | ® 1921680111

Home New~ Admin~ Help

Home > Ames Housing

F1 IFp w2 @ B WX Yy %

- 0.9
correlation map of the features

MSZoning
LotArea
Alley
LandContour
LotConfig
Neighborhood
Condition2 0.6
HouseStyle
OverallCond
‘YearRemodAdd
RoofMatl
Exterior2nd
MasVnrArea
ExterCond
BsmtQual
BsmtExposure 03
BsmtFinSF1 N
BsmtFinSF2
TotalBsmtSF
HeatingQC
Electrical
2ndFIrSF
GrLivArea
BsmtHalfBath
HalfBath
KitchenAbvGr @
TotRmsAbvGrd
Fireplaces
GarageType
GarageFinish
GarageArea

GarageCond
WoodDecksF
EnclosedPorch

