

    
      
          
            
  
AutoMLk: automated machine learning toolkit

This toolkit is designed to be integrated within a python project, but also independently through the interface of the app.

The framework is built with principles from auto-sklearn, with the following improvements:


	web interface (flask) to review the datasets, the search results and graphs


	include sklearn models, but also Xgboost, LightGBM, CatBoost and keras Neural Networks


	2nd level ensembling with model selection and stacking


	can be used in competition mode (to generate a submit file from a test set), on benchmark mode (separate train set and public set) and standard mode.





[image: models with the best scores]
Best models by eval score



We have provided some public datasets to initialize the framework and compare results with best scores.
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User guide

The dataset and the results of the search are best viewed with the web app through a standard browers.

to start the app, please go in the web folder and run the app server:

python run.py





then access the app in a browser with the follwoing url:

http://localhost:5001





or from another machine with the ip address of the machine where the server is running:

http://192.168.0.10:5001





(in this example, we suppose the address of the server is 192.168.0.10)


Home

The home page shows the list of datasets:


[image: home page]
list of datasets in autoMLk



You can select a list of datasets from a specific domain, with the selector at the top right:


[image: domain]
list of datasets per domain






Dataset

To import the list of preloaded datasets (or your own list), you can select the option ‘Import’ in the menu ‘New’:


[image: import datasets]
import a list of datasets



You may create directly a dataset by using the ‘Dataset’ option in the menu ‘New’:


[image: create dataset]
create a new dataset



You may afterwards update some fields of a dataset by using the edit icon in the list of datasets in the home page:


[image: update dataset]
update a dataset



We can access to a specific dataset in clicking on the row of the required dataset.
When a dataset is created, there is only the features and analysis of the data available:


[image: dataset]
parameters of the dataset



By clicking on the various tabs, we can view:


[image: features]
the list of features of the dataset




[image: histogram of the target column]
the histogram of the target column




[image: correlation matrix of the features]
the correlation matrix of the features



We need to launch the search process with various models in order to access to be results




Results and best models

When the search is launched, 3 additional tabs are available:


[image: models with the best scores]
Best models by eval score



And per pre-processing steps:


[image: pre-processing steps with the best scores]
pre-processing steps by eval score



The graph of the best results over time:


[image: search history]
The evolution of the best scores in time



And after a while, the best ensembles:


[image: _images/ensembles.png]


The best ensembles

And then by clicking on a specific model access to the details


[image: details of the search by model]
details of the search by model



And then on a specific round:


[image: details of a round]
a round with a se of model parameters and pre-processing




[image: pre-processing steps]
details of the re-processing steps



Where we can view the performance and the predictions:


[image: feature importance]
feature importance scored by the model




[image: predictions versus actuals]
predictions versus actuals (in regression)




[image: confusion matrix]
and a confusion matrix (in classification)




[image: histogram of the predictions]
and the histogram of the predictions




Admin




Monitoring

The monitoring screen displays the different status of the different components in the architecture: controller and workers


[image: monitoring]
monitoring panel






Config


[image: admin console]
configuration panel



It is also possible to modify the theme of the user interface directly from the config panel:


[image: admin console]
configuration panel











          

      

      

    

  

    
      
          
            
  
Installation


Pre-requisites

Sklearn version must be > 0.19, otherwise there will be several blocking issues.

to upgrade scikit-learn:

On conda:

conda update conda

conda update scikit-learn





If you do not use conda, update with pip:

pip install scikit-learn --update





Warning: if you use conda, you must absolutely update sklearn with conda

Additionally, you must also install category_encoders and imbalanced-learn:

pip install category_encoders
pip install imbalanced-learn





Optionally, you may install the following models:


	LightGBM (highly recommended, because it is very quick and efficient):




pip install lightgbm






	Xgboost (highly recommended, because it is also state of the art):




See Xgboost documentation for installation


	Catboost:




pip install catboost






	keras with theano or tensorflow:




See keras, theano or tensorflow documentation for installation




Installation

Download the module from github and extract the zip file in a folder (by default automlk-master)

Install as:

cd automlk-master

python setup.py install








Basic installation

The simplest installation runs on a single machine, with at least the following processes:
1. the web app
2. the controller, grapher and text worker
3. a single worker

These 3 components are run in a console (Windows) or Terminal (Linux).

The basic installation will use a data folder on the same machine.
By default, the data folder should be created at one level upper the automlk-master folder.

For example, let’s assume that autoMLk is created in the $HOME (Linux) level or Documents (windows):


	
	home

	
	
	pierre

	
	
	automlk-master

	
	automlk


	run


	web










	data




















If you want to use a data folder in another location, you can define this in the config screen.

To run the web app:

cd automlk-master/web

python run.py





This will launch the web app, which can be accessed from a web browser, at the following address:

http://localhost:5001





From the web app, you can now define the set-up and then import the example of datasets.

You can launch the search in a dataset simply by clicking on the start/pause button in the home screen, and view the results through with the web interface.
The search will continue automatically until the search is completed.

To run the controller, grapher et text manager:

cd automlk-master/run

python run_controller.py
python run_grapher.py
python run_worker_text.py





To run the workers on one or multiple machines:

On Linux:

cd automlk-master/run

sh worker.sh





On Windows:

cd automlk-master/run

worker





Note:
This will run the python module ru_worker.py in an infinite loop, in order to catch the potential crashes from the worker.




Advanced configuration


[image: architecture of automlk]
independent components of the architecture




Data server

The data are stored in a specific folder. In the default configuration, it is supposed to be on the same machine, and in the folder data.
You may specify a different machine and location. The configuration is stored in the config.json file

{“data”: “../../data”, “theme”: “bootswatch/3.3.7/darkly”, “store”: “file”, “store_url”: “192.168.0.18”}

The data folder must be accessible by all the machines with the following components:
- web server
- controller
- worker




Web server

The web server should be on a separate machine than the workers, in order to guarantee the response times for the user inferface.

If you want to use a data folder in another location, you can define this in the config screen.

To run the web app:

cd automlk-master/web

python run.py





This will launch the web app, which can be accessed from a web browser, at the following address:

http://localhost:5001





From the web app, you can now define the set-up and then import the example of datasets.

You can launch the search in a dataset simply by clicking on the start/pause button in the home screen, and view the results through with the web interface.
The search will continue automatically until the search is completed.




Store

The store by default is implemented using the file system, in he folder data/store, where ‘data’ is the folder defined for data storage.

The recommended mode is Redis, with the following advantages:
- faster user experience of the web app, thanks to the in-memory storage of Redis which is very fast
- more robust queuing and communication mecanism between controller and workers.

It is then highly recommended to use Redis for the store, when you have a cluster of multiple workers.

The installation of Redis is simple on Linux machines, and there is also a windows version available.
Please see the Redis documentation directly to install and configure your Redis store.

The Redis server can be installed on the same machine as the web server.




Controller, grapher and text worker

The controller can be executed on the machine of the web server. It can also be installed if required on a specific machine.

It must be run in a standalone process, and we recommend that you install this process in a service (windows server) or a permanent process (Linux).

To run the controller:

cd automlk-master/run

python run_controller.py
python run_grapher.py
python run_worker_text.py








Workers

The workers are the components in the architecture with the most significant impact: the speed of search is directly proportional to the number of workers.
We recommend to run at least 4 workers, and with multiple datasets to be searched simultaneously, a cluster of 10 to 20 machines should deliver great performance and speed.

To run the worker:

On Linux:

cd automlk-master/run

sh worker.sh





On Windows:

cd automlk-master/run

worker





Note:
This will run the python module ru_worker.py in an infinite loop, in order to catch the potential crashes from the worker.









          

      

      

    

  

    
      
          
            
  
Architecture

The architecture is distributed and can be installed on multiple machines


	the web app for user interaction and display results


	the controller manages the search between models and parameters


	the grapher generates graphs on a dataset asynchronously


	the texter generates unsupervised models for text sets


	the workers execute the pre-processing steps and cross validation (cpu intensive): the more workers are run in parallel, the quicker the results


	the Redis store is an in-memory database and queue manager





[image: architecture of automlk]
independent components of the architecture



The software architecture is organized in concentric layers:


[image: software components]
software components of the architecture







          

      

      

    

  

    
      
          
            
  
DataSet

The features of the automated machine learning are defined and stored in the DataSet object.
All features and data of a DataSet object can be viewed with the web app.

We have included a sample of public datasets to start with autoMLk.

To use these datasets, upload the list of datasets or create a dataset in the New dataset from the menu.

the data describing these datasets are located in the csv file ‘dataset.csv’ in the automlk/datasets folder.
You may use the same format to create your own datasets.





          

      

      

    

  

    
      
          
            
  
Searching

The automated search will test preprocessing steps and models.





          

      

      

    

  

    
      
          
            
  
List of models

The following models are included in autoMLk, with their respective hyper-parameters:


Models level 1


regression:


	LightGBM

	boosting_type, num_leaves, max_depth, learning_rate, n_estimators, min_split_gain, min_child_weight, min_child_samples, subsample, subsample_freq, colsample_bytree, reg_alpha, reg_lambda, verbose, objective, metric



	XgBoost

	max_depth, learning_rate, n_estimators, booster, gamma, min_child_weight, max_delta_step, subsample, colsample_bytree, colsample_bylevel, reg_alpha, reg_lambda, scale_pos_weight, tree_method, sketch_eps, n_jobs, silent, objective, eval_metric



	CatBoost

	learning_rate, depth, verbose



	Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout



	Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, criterion



	Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion



	Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, loss



	AdaBoost

	n_estimators, learning_rate, random_state, loss



	Knn

	n_neighbors, weights, algorithm, leaf_size, p, n_jobs



	SVM

	C, epsilon, kernel, degree, gamma, coef0, shrinking, tol, max_iter, verbose



	Linear SVR

	C, loss, epsilon, dual, tol, fit_intercept, intercept_scaling, max_iter, verbose



	Linear Regression

	fit_intercept, normalize, copy_X, n_jobs



	Ridge Regression

	alpha, fit_intercept, normalize, copy_X, tol, solver



	Lasso Regression

	alpha, fit_intercept, normalize, precompute, copy_X, tol, positive, selection



	Huber Regression

	epsilon, alpha, fit_intercept, tol








classification:


	LightGBM

	boosting_type, num_leaves, max_depth, learning_rate, n_estimators, min_split_gain, min_child_weight, min_child_samples, subsample, subsample_freq, colsample_bytree, reg_alpha, reg_lambda, verbose, objective, metric



	XgBoost

	max_depth, learning_rate, n_estimators, booster, gamma, min_child_weight, max_delta_step, subsample, colsample_bytree, colsample_bylevel, reg_alpha, reg_lambda, scale_pos_weight, tree_method, sketch_eps, n_jobs, silent, objective, eval_metric



	CatBoost

	learning_rate, depth, verbose



	Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight



	Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight



	Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, criterion, loss



	AdaBoost

	n_estimators, learning_rate, random_state, algorithm



	Knn

	n_neighbors, weights, algorithm, leaf_size, p, n_jobs



	SVM

	C, kernel, degree, gamma, coef0, shrinking, tol, max_iter, verbose, probability



	Logistic Regression

	penalty, dual, tol, C, fit_intercept, intercept_scaling, solver, max_iter, multi_class, n_jobs



	Naive Bayes Gaussian

	**



	Naive Bayes  Bernoulli

	alpha, binarize, fit_prior



	Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout










Ensembles


regression:


	Stacking LightGBM

	task, boosting, learning_rate, num_leaves, tree_learner, max_depth, min_data_in_leaf, min_sum_hessian_in_leaf, feature_fraction, bagging_fraction, bagging_freq, lambda_l1, lambda_l2, min_gain_to_split, drop_rate, skip_drop, max_drop, uniform_drop, xgboost_dart_mode, top_rate, other_rate, verbose, objective, metric



	Stacking XgBoost

	booster, eval_metric, eta, min_child_weight, max_depth, gamma, max_delta_step, sub_sample, colsample_bytree, colsample_bylevel, lambda, alpha, tree_method, sketch_eps, scale_pos_weight, silent, objective



	Stacking Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, criterion



	Stacking Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion



	Stacking Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, loss



	Stacking Linear Regression

	fit_intercept, normalize, copy_X, n_jobs








classification:


	Stacking LightGBM

	task, boosting, learning_rate, num_leaves, tree_learner, max_depth, min_data_in_leaf, min_sum_hessian_in_leaf, feature_fraction, bagging_fraction, bagging_freq, lambda_l1, lambda_l2, min_gain_to_split, drop_rate, skip_drop, max_drop, uniform_drop, xgboost_dart_mode, top_rate, other_rate, verbose, objective, metric



	Stacking XgBoost

	booster, eval_metric, eta, min_child_weight, max_depth, gamma, max_delta_step, sub_sample, colsample_bytree, colsample_bylevel, lambda, alpha, tree_method, sketch_eps, scale_pos_weight, silent, objective



	Stacking Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout



	Stacking Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight



	Stacking Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight



	Stacking Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, criterion, loss



	Stacking Logistic Regression

	penalty, dual, tol, C, fit_intercept, intercept_scaling, solver, max_iter, multi_class, n_jobs



	Stacking Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout













          

      

      

    

  

    
      
          
            
  
Pre-processing steps

The following pre-processing methods are included in autoMLk, with their respective hyper-parameters:


categorical encoding:


	No encoding

	**



	Label Encoder

	**



	One hot categorical

	drop_invariant



	BaseN categorical

	drop_invariant, base



	Hashing categorical

	drop_invariant








text encoding:

Bag of words

Word2Vec

Doc2Vec




imputing missing values:


	No missing

	**



	Missing values fixed

	fixed



	Missing values frequencies

	frequency








feature scaling:


	No scaling

	**



	Scaling Standard

	**



	Scaling MinMax

	**



	Scaling MaxAbs

	**



	Scaling Robust

	quantile_range








feature selection:


	No Feature selection

	**



	Truncated SVD

	n_components, algorithm



	Fast ICA

	n_components, algorithm



	PCA

	n_components



	Selection RF

	n_estimators



	Selection RF

	n_estimators



	Selection LSVR

	**
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Models level 1


regression:


	LightGBM

	boosting_type, num_leaves, max_depth, learning_rate, n_estimators, min_split_gain, min_child_weight, min_child_samples, subsample, subsample_freq, colsample_bytree, reg_alpha, reg_lambda, verbose, objective, metric



	XgBoost

	max_depth, learning_rate, n_estimators, booster, gamma, min_child_weight, max_delta_step, subsample, colsample_bytree, colsample_bylevel, reg_alpha, reg_lambda, scale_pos_weight, tree_method, sketch_eps, n_jobs, silent, objective, eval_metric



	CatBoost

	learning_rate, depth, verbose



	Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout



	Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, criterion



	Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion



	Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, loss



	AdaBoost

	n_estimators, learning_rate, random_state, loss



	Knn

	n_neighbors, weights, algorithm, leaf_size, p, n_jobs



	SVM

	C, epsilon, kernel, degree, gamma, coef0, shrinking, tol, max_iter, verbose



	Linear SVR

	C, loss, epsilon, dual, tol, fit_intercept, intercept_scaling, max_iter, verbose



	Linear Regression

	fit_intercept, normalize, copy_X, n_jobs



	Ridge Regression

	alpha, fit_intercept, normalize, copy_X, tol, solver



	Lasso Regression

	alpha, fit_intercept, normalize, precompute, copy_X, tol, positive, selection



	Huber Regression

	epsilon, alpha, fit_intercept, tol








classification:


	LightGBM

	boosting_type, num_leaves, max_depth, learning_rate, n_estimators, min_split_gain, min_child_weight, min_child_samples, subsample, subsample_freq, colsample_bytree, reg_alpha, reg_lambda, verbose, objective, metric



	XgBoost

	max_depth, learning_rate, n_estimators, booster, gamma, min_child_weight, max_delta_step, subsample, colsample_bytree, colsample_bylevel, reg_alpha, reg_lambda, scale_pos_weight, tree_method, sketch_eps, n_jobs, silent, objective, eval_metric



	CatBoost

	learning_rate, depth, verbose



	Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight



	Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight



	Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, criterion, loss



	AdaBoost

	n_estimators, learning_rate, random_state, algorithm



	Knn

	n_neighbors, weights, algorithm, leaf_size, p, n_jobs



	SVM

	C, kernel, degree, gamma, coef0, shrinking, tol, max_iter, verbose, probability



	Logistic Regression

	penalty, dual, tol, C, fit_intercept, intercept_scaling, solver, max_iter, multi_class, n_jobs



	Naive Bayes Gaussian

	**



	Naive Bayes  Bernoulli

	alpha, binarize, fit_prior



	Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout










Ensembles


regression:


	Stacking LightGBM

	task, boosting, learning_rate, num_leaves, tree_learner, max_depth, min_data_in_leaf, min_sum_hessian_in_leaf, feature_fraction, bagging_fraction, bagging_freq, lambda_l1, lambda_l2, min_gain_to_split, drop_rate, skip_drop, max_drop, uniform_drop, xgboost_dart_mode, top_rate, other_rate, verbose, objective, metric



	Stacking XgBoost

	booster, eval_metric, eta, min_child_weight, max_depth, gamma, max_delta_step, sub_sample, colsample_bytree, colsample_bylevel, lambda, alpha, tree_method, sketch_eps, scale_pos_weight, silent, objective



	Stacking Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, criterion



	Stacking Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion



	Stacking Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, loss



	Stacking Linear Regression

	fit_intercept, normalize, copy_X, n_jobs








classification:


	Stacking LightGBM

	task, boosting, learning_rate, num_leaves, tree_learner, max_depth, min_data_in_leaf, min_sum_hessian_in_leaf, feature_fraction, bagging_fraction, bagging_freq, lambda_l1, lambda_l2, min_gain_to_split, drop_rate, skip_drop, max_drop, uniform_drop, xgboost_dart_mode, top_rate, other_rate, verbose, objective, metric



	Stacking XgBoost

	booster, eval_metric, eta, min_child_weight, max_depth, gamma, max_delta_step, sub_sample, colsample_bytree, colsample_bylevel, lambda, alpha, tree_method, sketch_eps, scale_pos_weight, silent, objective



	Stacking Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout



	Stacking Extra Trees

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight



	Stacking Random Forest

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, n_jobs, criterion, class_weight



	Stacking Gradient Boosting

	n_estimators, max_features, max_depth, min_samples_split, min_samples_leaf, min_weight_fraction_leaf, max_leaf_nodes, min_impurity_decrease, verbose, random_state, warm_start, learning_rate, criterion, loss



	Stacking Logistic Regression

	penalty, dual, tol, C, fit_intercept, intercept_scaling, solver, max_iter, multi_class, n_jobs



	Stacking Neural Networks

	units, batch_size, batch_normalization, activation, optimizer, learning_rate, number_layers, dropout











          

      

      

    

  

    
      
          
            
  
categorical encoding:


	No encoding

	**



	Label Encoder

	**



	One hot categorical

	drop_invariant



	BaseN categorical

	drop_invariant, base



	Hashing categorical

	drop_invariant








text encoding:

Bag of words

Word2Vec

Doc2Vec




imputing missing values:


	No missing

	**



	Missing values fixed

	fixed



	Missing values frequencies

	frequency








feature scaling:


	No scaling

	**



	Scaling Standard

	**



	Scaling MinMax

	**



	Scaling MaxAbs

	**



	Scaling Robust

	quantile_range








feature selection:


	No Feature selection

	**



	Truncated SVD

	n_components, algorithm



	Fast ICA

	n_components, algorithm



	PCA

	n_components



	Selection RF

	n_estimators



	Selection RF

	n_estimators



	Selection LSVR

	**
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